A mechanism of airway injury in an epithelial model of mucociliary clearance

نویسندگان

  • Darryl W O'Brien
  • Melanie I Morris
  • Jie Ding
  • J Gustavo Zayas
  • Shusheng Tai
  • Malcolm King
چکیده

We studied the action of sodium metabisulphite on mucociliary transport in a frog palate epithelial injury model, hypothesizing that it may be useful for the study of mechanisms of airway injury. Sodium metabisulphite (MB) releases SO2 on contact with water. SO2 is a pollutant in automobile fumes and may play a role in the exacerbation of airway disease symptoms. We first investigated its effect on mucociliary clearance. MB 10(-1) M, increased mucociliary clearance time (MCT) by 254.5 +/- 57.3% of control values, (p < 0.001, n = 7). MB 10(-4) and 10(-2) M did not interfere with mucus clearance time compared to control values. In MB-treated frog palates, MCT did not return to control values after one hour (control, 97.3 +/- 6.3% vs. MB, 140.9 +/- 46.3%, p < 0.001, n = 7). Scanning EM images of epithelial tissue were morphometrically analyzed and showed a 25 +/- 12% loss of ciliated cells in MB palates compared to controls with an intact ciliary blanket. Intact cells or groups of ciliated cells were found in scanning EM micrographs of mucus from MB-treated palates. This was associated with increased matrix metalloproteinase (MMP-9) activity in epithelial tissue and mucus. We suggest that the loss of ciliated cells as a result of MMP-9 activation prevented full recovery of MCT after MB 10(-1) M. The mechanism of action may be on epithelial cell-cell or cell-matrix attachments leading to cell loss and a disruption of MCT. Further studies are warranted to determine whether this is an inflammatory mediated response or the result of a direct action on epithelial cells and what role this mechanism may play in the progression to chronic airway diseases with impaired mucociliary clearance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of cilia, mucus, and airway surface liquid in mucociliary dysfunction: lessons from mouse models.

Mucociliary clearance is an important primary innate defense mechanism that protects the lungs from deleterious effects of inhaled pollutants, allergens, and pathogens. Mucociliary dysfunction is a common feature of chronic airway diseases in humans. The mucociliary apparatus consists of three functional compartments, that is, the cilia, a protective mucus layer, and an airway surface liquid (A...

متن کامل

Continuous mucociliary transport by primary human airway epithelial cells in vitro.

Mucociliary clearance (MCC) is an important innate defense mechanism that continuously removes inhaled pathogens and particulates from the airways. Normal MCC is essential for maintaining a healthy respiratory system, and impaired MCC is a feature of many airway diseases, including both genetic (cystic fibrosis, primary ciliary dyskinesia) and acquired (chronic obstructive pulmonary disease, br...

متن کامل

Mucociliary Clearance Defects in a Murine In Vitro Model of Pneumococcal Airway Infection

Mucociliary airway clearance is an innate defense mechanism that protects the lung from harmful effects of inhaled pathogens. In order to escape mechanical clearance, airway pathogens including Streptococcus pneumoniae (pneumococcus) are thought to inactivate mucociliary clearance by mechanisms such as slowing of ciliary beating and lytic damage of epithelial cells. Pore-forming toxins like pne...

متن کامل

Cigarette smoke inhibition of ion transport in canine tracheal epithelium.

Inhalation of cigarette smoke is known to impair pulmonary mucociliary clearance. Active ion transport by airway epithelium plays an important role in maintaining effective mucociliary clearance by regulating the volume and composition of the airway secretions. To determine the effect of cigarette smoke on airway epithelial ion transport, the electrical properties and transepithelial Na and Cl ...

متن کامل

Cellular and molecular mechanisms of bacterial adhesion to respiratory mucosa.

Different bacterial species adhere avidly to respiratory mucus. Such adhesion, when followed by ciliary clearance, represents an important stage of the airway defense system. However, in pathological conditions, the mucociliary clearance may be severely reduced, and mucus-associated bacteria may multiply and infect the underlying epithelium. Only a few bacteria have been shown to adhere to cili...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Respiratory Research

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2004